Preprints
-
Federico B†, Chuanbo H†, Junyoung P†, Minsu K, Hyeonah K, Jiwoo S, Haeyeon K, Joungho K, Jinkyoo P
RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark.
arXiv preprints.
-
Federico B†, Chuanbo H†, Laurin L†, Jiwoo S, Junyoung P, Kyuree A, Changhyun K, Lin X, Jinkyoo P
PARCO: Learning Parallel Autoregressive Policies for Efficient Multi-Agent Combinatorial Optimization
arXiv preprints.
-
Haoran Y, Jiarui W, Zhiguang C, Federico B, Chuanbo H, Haeyeon K, Jinkyoo P, Guojie S
Large Language Models as Hyper-Heuristics for Combinatorial Optimization
arXiv preprints.
-
Jiachen L†, Chuanbo H†, Jinkyoo P, Hengbo M, Victoria D, Mykel J K
EvolveHypergraph: Group-Aware Dynamic Relational Reasoning for Trajectory Prediction.
arXiv preprints.
2024
-
Federico B†, Chuanbo H†, Nayeli Gast Z, AndrĂ© H, Niels W, Leon L, Kevin T, Jinkyoo P
RouteFinder: Towards foundation models for vehicle routing problems
ICML 2024 Workshop (Oral).
-
Jiwoong K, Chuanbo H, Subin L, Seoktae K, Joo-Hyon K, Mi-Hyun P
Deep learning-based coagulant dosage prediction for extreme events leveraging large-scale data
JWPE, doi: https://doi.org/10.1016/j.jwpe.2024.105934.
-
Huijie T†, Federico B†, Zihan M, Chuanbo H, Kyuree A, Jinkyoo P
HiMAP: Learning Heuristics-Informed Policies for Large-Scale Multi-Agent Pathfinding
AAMAS 2024 (Poster).
-
Jiwoong K, Chuanbo H, Kyoungpil K, Subin L, Gunhak O, Mi-Kyun P, Seoktae K
Optimizing coagulant dosage using deep learning models with large-scale data
Chemosphere, doi: https://doi.org/10.1016/j.chemosphere.2023.140989.
2023
-
Federico B†, Chuanbo H†, Junyoung P†, Minsu K, Hyeonah K, Jiwoo S, Haeyeon K, Joungho K, Jinkyoo P
RL4CO: a Unified Reinforcement Learning for Combinatorial Optimization Library.
NeurIPS 2023 GLFrontiers Workshop (Oral).
-
Chuanbo H†, Federico B†, Michael P, Stefano M, Jinkyoo P
Learning Efficient Surrogate Dynamic Models with Graph Spline Networks.
NeurIPS 2023 (Poster).
-
Subin L, Jiwoong K, Chuanbo H, Seoktae K, Mi-Hyun P
Comparing artificial and deep neural network models for prediction of coagulant amount and settled water turbidity: Lessons learned from big data in water treatment operations.
JWPE, doi: https://doi.org/10.1016/j.jwpe.2023.103949.
-
Subin L, Jiwoong K, Chuanbo H, Mi-Hyun P, Seoktae K
Coagulant dosage determination using deep learning-based graph attention multivariate time series forecasting model
Water Research, doi: https://doi.org/10.1016/j.watres.2023.119665.
2022
† = co-first author; * = co-corresponding author