Skip to main content

Publications

📅   Last Update: 2024.09.06.

Preprints
  • Federico B†, Chuanbo H†, Junyoung P†, Minsu K, Hyeonah K, Jiwoo S, Haeyeon K, Joungho K, Jinkyoo P
    RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark.
    arXiv preprints.
  • Federico B†, Chuanbo H†, Laurin L†, Jiwoo S, Junyoung P, Kyuree A, Changhyun K, Lin X, Jinkyoo P
    PARCO: Learning Parallel Autoregressive Policies for Efficient Multi-Agent Combinatorial Optimization
    arXiv preprints.
  • Haoran Y, Jiarui W, Zhiguang C, Federico B, Chuanbo H, Haeyeon K, Jinkyoo P, Guojie S
    Large Language Models as Hyper-Heuristics for Combinatorial Optimization
    arXiv preprints.
  • Jiachen L†, Chuanbo H†, Jinkyoo P, Hengbo M, Victoria D, Mykel J K
    EvolveHypergraph: Group-Aware Dynamic Relational Reasoning for Trajectory Prediction.
    arXiv preprints.
2024
  • Federico B†, Chuanbo H†, Nayeli Gast Z, AndrĂ© H, Niels W, Leon L, Kevin T, Jinkyoo P
    RouteFinder: Towards foundation models for vehicle routing problems
    ICML 2024 Workshop (Oral).
  • Jiwoong K, Chuanbo H, Subin L, Seoktae K, Joo-Hyon K, Mi-Hyun P
    Deep learning-based coagulant dosage prediction for extreme events leveraging large-scale data
    JWPE, doi: https://doi.org/10.1016/j.jwpe.2024.105934.
  • Huijie T†, Federico B†, Zihan M, Chuanbo H, Kyuree A, Jinkyoo P
    HiMAP: Learning Heuristics-Informed Policies for Large-Scale Multi-Agent Pathfinding
    AAMAS 2024 (Poster).
  • Jiwoong K, Chuanbo H, Kyoungpil K, Subin L, Gunhak O, Mi-Kyun P, Seoktae K
    Optimizing coagulant dosage using deep learning models with large-scale data
    Chemosphere, doi: https://doi.org/10.1016/j.chemosphere.2023.140989.
2023
  • Federico B†, Chuanbo H†, Junyoung P†, Minsu K, Hyeonah K, Jiwoo S, Haeyeon K, Joungho K, Jinkyoo P
    RL4CO: a Unified Reinforcement Learning for Combinatorial Optimization Library.
    NeurIPS 2023 GLFrontiers Workshop (Oral).
  • Chuanbo H†, Federico B†, Michael P, Stefano M, Jinkyoo P
    Learning Efficient Surrogate Dynamic Models with Graph Spline Networks.
    NeurIPS 2023 (Poster).
  • Subin L, Jiwoong K, Chuanbo H, Seoktae K, Mi-Hyun P
    Comparing artificial and deep neural network models for prediction of coagulant amount and settled water turbidity: Lessons learned from big data in water treatment operations.
    JWPE, doi: https://doi.org/10.1016/j.jwpe.2023.103949.
  • Subin L, Jiwoong K, Chuanbo H, Mi-Hyun P, Seoktae K
    Coagulant dosage determination using deep learning-based graph attention multivariate time series forecasting model
    Water Research, doi: https://doi.org/10.1016/j.watres.2023.119665.
2022
  • Chuanbo H
    Efficient continuous spatio-temporal physics simulation with graph spline networks.
    KAIST Open Access (Master Dissertation).
  • Chuanbo H†, Federico B†, Michael P, Stefano M, Jinkyoo P
    Efficient Continuous Spatio-Temporal Simulation with Graph Spline Networks.
    ICML 2022 AI4Science Workshop (Oral).

† = co-first author; * = co-corresponding author